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Abstract

This study has investigated and compared genetic programming (GP) — a method of automatically generating equations that describe the cause-
and-effect relationships in a system — and statistical methods for modelling two controlled release formulations—a matrix tablet and microspheres.
With the improved GP models exhibiting comparable predictive power, as well as simpler equations in some cases, the results obtained indicate
that GP can be considered as an effective and efficient method for modelling controlled release formulations.
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1. Introduction

The design of pharmaceutical formulations involves complex
interactions of ingredients and processing conditions. Genetic
programming (GP) is known as a technique with the capabil-
ity of generating mathematical equations, which are able to
define models for data. Developed by Koza in 1992 (Koza,
1994, 1997, 1998), GP is founded on the basic principle of Dar-
winian theory and generates a mathematical equation based on
experimental data. However, both the functional form and the
numeric coefficients are found by an evolutionary mechanism.
A population of possible solutions (mathematical equations) for
a specific problem is randomly created and this is considered
as the first generation. New generations are created by muta-
tion and crossover. The fitness of each solution (mathematical
equation) is evaluated using the fitness function. The final GP
equation is considered as the optimum equation for the prob-
lem. A background to the concept and operation of GP is given
below. The paper then reports the application of GP to two sets
of published formulation data, one for a matrix tablet, the other
for controlled release microspheres and compares the results
obtained with statistical analyses.
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2. Genetic programming concept

GP has been known primarily as a learning technique pro-
ducing mathematical equations (Koza, 1994, 1997, 1998). It
is founded on the basic principle of Darwin’s theory of evo-
lution in nature. In nature, biological structures that are more
successful at operating in their given environment have a higher
probability of surviving and reproducing. These structures are
considered as the result of Darwinian natural selection operating
in an environment over a period of time. With a similar princi-
ple of natural selection, Koza introduced GP that attempts and
succeeds at applying this evolutionary theory in order to find
the best (fittest) or the most appropriate equation (solution) for
a problem domain.

2.1. Representation scheme

GP modifies individuals of the population after a number of
runs in every cycle, called a generation, to find the best solution.
The structure of individuals in GP is a tree (see Fig. 1(a)).

Possible structures in genetic programming are the set of all
compositions of functions and the set of terminals.

The elements in the function set may include:

- arithmetic operations (+, —, *, etc.),
- mathematical functions (such as sin, cos, exp, and log),
- Boolean operations (such as AND, OR, NOT),


mailto:p.york@bradford.ac.uk
dx.doi.org/10.1016/j.ijpharm.2007.09.044

D.Q. Do et al. / International Journal of Pharmaceutics 351 (2008) 194-200 195

(a)

(b)

The subtrees are
swapped, thus

generating new trees

(c) selected e
node \

® Q
OXOI0JO

MOO

Fig. 1. (a) An example of a GP structure, (b) crossover operation and (c) process of mutation.

- conditional operators (such as If-Then-Else),

functions causing iteration (such as Do-Until),

- functions causing recursion, and

any other domain-specific functions that may be defined.

The terminals are typically either a variable or a constant
value.

2.2. Genetic operations

In the Darwinian principle of reproduction and survival of
the fittest, a population always has many generations and the
individuals of new generations are the result of the combination
of the individuals in the previous generations. In other words,
there is a transfer of a set of individuals into a new generation
of the population using genetic operations.

Crossover, reproduction, and mutation are genetic operations
for creating the new individuals in each generation (see Fig. 1(b
and c)). The crossover operation creates a new individual from

two parental individuals selected from the population based on
fitness. Within each parental tree, a random node is selected and
the subtrees under the selected node are swapped to create two
new trees. The simplest operation of genetic operations selects
the individuals from a population based on their fitness and then
copies them into the new population. The mutation operation
creates a new individual from an existing tree in a population by
deleting and replacing one node of that tree with another node
from the same set. Note that a function only replaces a function
and a terminal only replaces a terminal.

2.3. Fitness function

To select individuals for crossover, reproduction, and to
determine how good the individuals are at solving the given
problem, fitness functions are employed. The fitness function
assesses how an individual is fitted to the environment of a
domain problem, after calculating the fitness for all individ-
uals. Every individual in a population is assigned a fitness
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Fig. 2. The implementation of GP.

value and then, based on the adopted selection method, spe-
cific individuals are identified for crossing over, mutating, or
reproducing. The considered fitness functions used in many
systems for solving research and optimisation problems are
MSE (Mean Square Error), SRM (Structural Risk Minimisa-
tion), AIC (Akaike’s Information Criterion), MDL (Minimum
Description Length), FPE (Final Prediction Error) (Weyer and
Kavli, 1994).

2.4. Implementation scheme

The implementation of GP is performed by the following
steps (see Fig. 2):

Step 1: One or more initial population of individuals is ran-
domly generated with functions and terminals related
to the problem domain.

Step 2: The implementation of GP iteratively performs the fol-
lowing steps until the termination criterion has been
satisfied:

i. The fitness value of every individual is estimated

according to a selected fitness measure.

ii. All individuals in the population are sorted based on
their fitness values.

iii. The next generation is produced using the genetic
operations.

iv. The termination criterion is checked. If it is not sat-
isfied, the next iteration is performed,; if satisfied go
to step 3.

Step 3: The result may be a solution to the problem domain.

In particular, the quality of the final model is controlled by
either the selection of training data or the values of the con-
trol parameters (crossover, mutation, reproduction and fitness
function).

3. Materials and method
3.1. Formulation data

The formulation database of the matrix tablet taken
from the literature (Bodea and Leucuta, 1997), consisted of
14 experimental records, and involved varying percentages
of two hydrophilic polymers (hydroxypropylmethylcellulose,
HPMC—X], sodium carboxymethylcellulose, CMCNa—X>)
and propranolol HCL—X3. The measured outputs were the
cumulative percentages of drug released after 1, 6, and 12h
sampling intervals (Y, Y», and Y3, respectively). These data
were modelled and optimised in the original study (Bodea
and Leucuta, 1997) by statistical methods using a D-optimal
quadratic model. In the present study, 10 records were used for
training and records 5, 8, 13 and the observed optimum formu-
lation from the original paper (Bodea and Leucuta, 1997) used
as unseen data for testing the predictive power of GP equation.

A formulation database for controlled release diclofenac
sodium microspheres containing 27 experimental records was
taken from a published paper (Gohel and Amin, 1998). In this
study, microspheres were prepared using sodium alginate as a
polymer and CaCl, as a cross-linking agent. A 33 full factorial
design was used to investigate the joint influences of three vari-
ables — the stirring speed during preparation of the microspheres
(X1), concentration of CaCl; (X>) and % of heavy liquid paraf-
fin in a blend of heavy and light liquid paraffin in the dispersion
medium (X3) — on the time for 80% drug dissolution (#3¢). In
addition, in the published study (Gohel and Amin, 1998), the %
drug released after 60 (Y¢0), 360 (Y360), and 480 min (Yag0) was
also considered as outputs that were analysed. 23 records were
used as training data, and 4 records used as unseen data to test
predictive power.

3.2. Software tool

The software used was a modified form of that described pre-
viously (Zongker et al., 1996), but with additional exponential
and other mathematical functions as well as the fitness functions
listed (Intelligensys, 2005). Table 1 lists the values of the control
parameters used in the present study.

In order to evaluate the quality of a model generated by GP,
the correlation coefficient R-squared (R?) was computed, with

Table 1
The value of control parameters of GP used in this study

Population size: 1000-2000-5000
Generation: 100-500-1000
Mutation: 0.2-0.5

Crossover: 0.2-0.5

Regeneration: 0.5-0.7
Reproduction: 0.05-0.2-0.5
Number of nodes: 20-30-50-100
Constant mutation: 0.05-0.5-0.7
Fitness functions: SRM, MDL, MSE, AIC, FPE
Node weighting factor: 0.01
Addition function: exp
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higher values of R? indicating the improved quality of the model. Table 2

The predicted results for Eq. (2) by genetic programming

g2 (1o Zimi =307 o (1)  Added noise (%)

Equations predicted

Z?:]()’i - 5’)2 0
. . . 1
where y is the mean of the dependent variable; ) the predicted 10

value from the model; n is the number of records.

X3X — (X, —25.405)/101.62
X3X; +(X1/4.26) + (X1/96.25)
X3X7 — (X1/—4.97)

4. Results and discussion

with real data, including the inevitable variation associated with

4.1. Validation of the method individual dafa points.

The GP method was validated successfully, as reported else- in the GP derived equations
where (Do, 2006), using mathematical data with 1% and 10%
noise added. The results indicated that in the majority of cases
the equations generated by GP were similar to the correspond-
ing mathematical equations used to generate the mathematical y= X1 + xx3
data. This confirmed the validity of the GP approach to deal 4

the noise added to the data.

For example from Table 2, although the equation constants

were different from the original Eq.

(2), the results were extremely close to the original Eq. (2). The
different constants from the original equation were caused by
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Fig. 3. Comparison of previous and present models from GP and the statistical model for Y>.
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Fig. 4. 3D plots of (a) GP and (b) the statistical equations for ¥; and Y3.
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4.2. Matrix tablet formulation

By choosing suitable values of control parameters, GP gen-
erated satisfactory models for all responses of the matrix tablet
formulation. The equations generated from GP were as follows:

Y1 = ((exp((X2/X1)X2))/((2.68X3) + X3))
x (2.20 — X1)(X3/12.29) (R% = 0.97) 3)

Y> = X3 + exp(—27.94X3(X, + 0.24))
+exp(—53.39X1 X3(X3 + exp(—59.68 X3 X3 X3)))
(R* = 0.94) 4)

Y3 = (X2 + X2)/ — 27.78) + (((X1/26.34)/(exp X3))
x ((75.01X3) — (X2/(((X1/91.94)/

(X2/ —52.97)X 1))/ X1) (R* =0.97) &)

Compared with a previous report (Do et al., 2005), the present
study gave improved models for all responses after further analy-
ses. For the models of the cuamulative percentage release after 1 h
(Y1) and 12 h (Y3), the quality of the models was improved with
higher R? values. In addition, for the Y> response, the equation
was less complicated. The previous equation for Y, (Eq. (6)) was
extremely complicated, because of overtraining or overfitting
(Dias et al., 2006; Hwang et al., 1998).

Yy = (X3 — X1)/ X2) + (X2 + (X2/ X3))
X (((X1/ — 80.24) — X|)(77.43X1)))/ — 27.16))/
(X2 + (X3 — ((X3/27.38)/(20.77/40.35))))
— (X3 + X3)X2))/(((X2/ X2) + (X3 — X1)
x ((X1/X1)79.38)) + X2)(X1/42.05)))
+ (X2 + X2) + X1)/((X3 — X1) + (X1(X3 — X2)))
+ (X2 + 13.73))))/ — 52.54) — ((X2/ X1)/
((=32.35)X3))) + X3), (R?>=10.99) (6)

Comparison of models for Y, in Fig. 3 indicates that whilst
the present model had a lower R? value when compared to the
previous result (Do et al., 2005), it was improved with good
representation of the relationships between the Y> property and
ingredients (X», X3).

The statistical equations for the outputs Y7, Y», ¥3 taken from
the literature (Bodea and Leucuta, 1997) are shown below:

Y; = —0.015 + 0.145X; — 0.062X5 + 0.168X3 + 0.594 X3
—0.691X:X> (R>=0.96) (7

Y2 = 0.279 — 0.1X; — 0.08X> + 0.626X3 + 1.27X3
—0.841X1 X, (R*>=0.88) ®)

Y3 = 0.629 — 0.246X| — 0.08X, 4 0.653X3 + 1.122X3
—0.841X1X> (R*=0.91) )

In comparison with the statistical result reported in the litera-
ture (Bodea and Leucuta, 1997), whilst producing more complex
equations for many responses, GP generated equations with
higher R? values. In addition, the 3D graphs from Figs. 3 and 4
demonstrate that comparable representations of the relationships
between the ingredients and properties of the formulation can be
seen from both the GP and statistical models. For example, the
increasing levels of both hydrophilic polymers: hydroxypropyl-
methylcellulose (HPMC) and sodium carboxymethylcellulose
(CMCNa) reduced amount of drug released after 1, 6 and
12h.

Fig. 5 demonstrates the improved predictive power of the
GP models for the unseen data. The linear R? values for all
these responses were higher or very similar to those from
the statistical models. For the outputs Y, and Y3, the slope
and the intercept coefficients from the GP models were much
improved compared to those from the statistical models. For
this database, it is apparent that overall GP produced improved
models.
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Fig. 5. Scatter plots, linear equations parameters and R? values for four unseen
data points from GP (¢) and statistical (= ) methods for Y;, ¥, and Y3.
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4.3. Controlled release diclofenac sodium microspheres Yoo = 40.154+ X| — X» — X3 +exp(X| — X2) — exp X3
formulation 5
(R° =0.73) (11)
The equations predicted by GP are as follows:
t30 = 426.22 — 51.15X1 +59.03X, + 27.60X3 (R2 =0.93) Y360 = 73.95 +4.00X — 5.19X, — 2.00X3 (R2 =0.92)
(10) (12)

Stirring speed (X;) and % heavy liquid paraffin (X;3)
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Fig. 7. Scatter plots, linear equations parameters and R? values for four unseen data points from GP for all responses.
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Y480 = 83.02 + 3.82X; — 3.82X, — 2.82X3 — 2.00X 1 X»

—X»2X3 (R>=0.90) (13)

It can be seen from Eq. (10), stirring speed X has a positive
effect on the drug release rate whilst increased amount of CaCl,
(X2) and percentage of heavy liquid paraffin in the dispersion
medium (X3) decrease the release rate. The time for 80% drug
dissolution (#gp) is influenced simultaneously by all observed
variables and increases with higher values of X, and X3 as well
as a low level of X.

The study of Gohel and Amin (1998) provided the following
equation for 3o from statistical analysis:

ts0 = 426.296 — 51.22X/ + 58.28X, + 27.22X53
+13.08X1 X2 + 11.92X2 X5  (R* = 0.96) (14)

Eq. (10) generated by GP for fg¢ is considerably simpler than
Eq. (14) with a similar R> value. When comparing these two
equations, there are no major differences between the coeffi-
cients and the equation from GP can be considered as a simplified
form of the statistical equation. Also as seen in Fig. 6, both mod-
els show that X| has a negative effect on the response #g9 whilst
an increased percentage of heavy liquid paraffin results in an
increase of the time for 80% drug release.

For other responses, Gohel and Amin (1998) did not pro-
vided the statistical results using the same database as used for
evaluating r3¢. Thus in the present study, the predictive power of
these responses was examined based on the regression analysis
for unseen data.

From Fig. 7, itis clear that the satisfactory predictive power of
the GP models for the unseen data can be seen. The linear R? val-
ues for all these responses were significantly high and the slope
and the intercept coefficients from the GP models were accept-
able. In general in comparison with the statistical method, GP
produced satisfactory models for all responses. Moreover for the
tgo response, the predictive equation of GP for this formulation
is simpler compared to the equation generated from statistical
analysis.

4.4. General comments

When validating the capability of GP using mathematical
data (Do, 2006) and comparing the predictive power of GP and
the statistical methods for both controlled release products, it
was recognised that the basis of the statistical approach is to
use standard equations and procedures based on statistical the-
ory to obtain the final equation. This equation is unique for the
input data and selected statistical procedures. The statistical out-

put is fixed and if a formulator wants to improve the quality of
the final statistical equation, he must carry out further experi-
ments to obtain a higher quality data set. However with GP, a
formulator can obtain alternative outputs, with a selection of an
appropriate training model. For example, by changing values
of control parameters or adding the “exp” function, the quality
of the predictive equation can be improved. In other words, a
formulator can perform GP in an iterative manner by directed
change of control parameter values until the most appropriate
and/or predictive model is obtained. However care must be taken
to avoid overtraining as observed in the matrix tablet example.

5. Conclusion

Genetic programming, with its advantage of generating math-
ematical equations, has been shown to be an efficient method
for modelling controlled release formulations. In contrast to
statistical approaches, GP requires no assumption of the func-
tional form (e.g. linear or quadratic) to be used to describe the
cause-and-effect relationships.
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