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bstract
This study has investigated and compared genetic programming (GP) – a method of automatically generating equations that describe the cause-
nd-effect relationships in a system – and statistical methods for modelling two controlled release formulations—a matrix tablet and microspheres.
ith the improved GP models exhibiting comparable predictive power, as well as simpler equations in some cases, the results obtained indicate

hat GP can be considered as an effective and efficient method for modelling controlled release formulations.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The design of pharmaceutical formulations involves complex
nteractions of ingredients and processing conditions. Genetic
rogramming (GP) is known as a technique with the capabil-
ty of generating mathematical equations, which are able to
efine models for data. Developed by Koza in 1992 (Koza,
994, 1997, 1998), GP is founded on the basic principle of Dar-
inian theory and generates a mathematical equation based on

xperimental data. However, both the functional form and the
umeric coefficients are found by an evolutionary mechanism.
population of possible solutions (mathematical equations) for
specific problem is randomly created and this is considered

s the first generation. New generations are created by muta-
ion and crossover. The fitness of each solution (mathematical
quation) is evaluated using the fitness function. The final GP
quation is considered as the optimum equation for the prob-
em. A background to the concept and operation of GP is given
elow. The paper then reports the application of GP to two sets
f published formulation data, one for a matrix tablet, the other

or controlled release microspheres and compares the results
btained with statistical analyses.

∗ Corresponding author. Tel.: +44 1274 233890; fax: +44 1274 234679.
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. Genetic programming concept

GP has been known primarily as a learning technique pro-
ucing mathematical equations (Koza, 1994, 1997, 1998). It
s founded on the basic principle of Darwin’s theory of evo-
ution in nature. In nature, biological structures that are more
uccessful at operating in their given environment have a higher
robability of surviving and reproducing. These structures are
onsidered as the result of Darwinian natural selection operating
n an environment over a period of time. With a similar princi-
le of natural selection, Koza introduced GP that attempts and
ucceeds at applying this evolutionary theory in order to find
he best (fittest) or the most appropriate equation (solution) for
problem domain.

.1. Representation scheme

GP modifies individuals of the population after a number of
uns in every cycle, called a generation, to find the best solution.
he structure of individuals in GP is a tree (see Fig. 1(a)).

Possible structures in genetic programming are the set of all
ompositions of functions and the set of terminals.

The elements in the function set may include:
arithmetic operations (+, −, *, etc.),
mathematical functions (such as sin, cos, exp, and log),
Boolean operations (such as AND, OR, NOT),

mailto:p.york@bradford.ac.uk
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Fig. 1. (a) An example of a GP structure, (b)

conditional operators (such as If-Then-Else),
functions causing iteration (such as Do-Until),
functions causing recursion, and
any other domain-specific functions that may be defined.

The terminals are typically either a variable or a constant
alue.

.2. Genetic operations

In the Darwinian principle of reproduction and survival of
he fittest, a population always has many generations and the
ndividuals of new generations are the result of the combination
f the individuals in the previous generations. In other words,
here is a transfer of a set of individuals into a new generation

f the population using genetic operations.

Crossover, reproduction, and mutation are genetic operations
or creating the new individuals in each generation (see Fig. 1(b
nd c)). The crossover operation creates a new individual from

p
a
d
u

over operation and (c) process of mutation.

wo parental individuals selected from the population based on
tness. Within each parental tree, a random node is selected and

he subtrees under the selected node are swapped to create two
ew trees. The simplest operation of genetic operations selects
he individuals from a population based on their fitness and then
opies them into the new population. The mutation operation
reates a new individual from an existing tree in a population by
eleting and replacing one node of that tree with another node
rom the same set. Note that a function only replaces a function
nd a terminal only replaces a terminal.

.3. Fitness function

To select individuals for crossover, reproduction, and to
etermine how good the individuals are at solving the given

roblem, fitness functions are employed. The fitness function
ssesses how an individual is fitted to the environment of a
omain problem, after calculating the fitness for all individ-
als. Every individual in a population is assigned a fitness
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listed (Intelligensys, 2005). Table 1 lists the values of the control
parameters used in the present study.

In order to evaluate the quality of a model generated by GP,
the correlation coefficient R-squared (R2) was computed, with

Table 1
The value of control parameters of GP used in this study

Population size: 1000–2000–5000
Generation: 100–500–1000
Mutation: 0.2–0.5
Crossover: 0.2–0.5
Regeneration: 0.5–0.7
Reproduction: 0.05–0.2–0.5
Fig. 2. The implementation of GP.

alue and then, based on the adopted selection method, spe-
ific individuals are identified for crossing over, mutating, or
eproducing. The considered fitness functions used in many
ystems for solving research and optimisation problems are

SE (Mean Square Error), SRM (Structural Risk Minimisa-
ion), AIC (Akaike’s Information Criterion), MDL (Minimum
escription Length), FPE (Final Prediction Error) (Weyer and
avli, 1994).

.4. Implementation scheme

The implementation of GP is performed by the following
teps (see Fig. 2):

tep 1: One or more initial population of individuals is ran-
domly generated with functions and terminals related
to the problem domain.

tep 2: The implementation of GP iteratively performs the fol-
lowing steps until the termination criterion has been
satisfied:
i. The fitness value of every individual is estimated

according to a selected fitness measure.
ii. All individuals in the population are sorted based on

their fitness values.
iii. The next generation is produced using the genetic

operations.
iv. The termination criterion is checked. If it is not sat-

isfied, the next iteration is performed; if satisfied go
to step 3.

tep 3: The result may be a solution to the problem domain.
In particular, the quality of the final model is controlled by
ither the selection of training data or the values of the con-
rol parameters (crossover, mutation, reproduction and fitness
unction).

N
C
F
N
A
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. Materials and method

.1. Formulation data

The formulation database of the matrix tablet taken
rom the literature (Bodea and Leucuta, 1997), consisted of
4 experimental records, and involved varying percentages
f two hydrophilic polymers (hydroxypropylmethylcellulose,
PMC—X1, sodium carboxymethylcellulose, CMCNa—X2)

nd propranolol HCL—X3. The measured outputs were the
umulative percentages of drug released after 1, 6, and 12 h
ampling intervals (Y1, Y2, and Y3, respectively). These data
ere modelled and optimised in the original study (Bodea

nd Leucuta, 1997) by statistical methods using a D-optimal
uadratic model. In the present study, 10 records were used for
raining and records 5, 8, 13 and the observed optimum formu-
ation from the original paper (Bodea and Leucuta, 1997) used
s unseen data for testing the predictive power of GP equation.

A formulation database for controlled release diclofenac
odium microspheres containing 27 experimental records was
aken from a published paper (Gohel and Amin, 1998). In this
tudy, microspheres were prepared using sodium alginate as a
olymer and CaCl2 as a cross-linking agent. A 33 full factorial
esign was used to investigate the joint influences of three vari-
bles – the stirring speed during preparation of the microspheres
X1), concentration of CaCl2 (X2) and % of heavy liquid paraf-
n in a blend of heavy and light liquid paraffin in the dispersion
edium (X3) – on the time for 80% drug dissolution (t80). In

ddition, in the published study (Gohel and Amin, 1998), the %
rug released after 60 (Y60), 360 (Y360), and 480 min (Y480) was
lso considered as outputs that were analysed. 23 records were
sed as training data, and 4 records used as unseen data to test
redictive power.

.2. Software tool

The software used was a modified form of that described pre-
iously (Zongker et al., 1996), but with additional exponential
nd other mathematical functions as well as the fitness functions
umber of nodes: 20–30–50–100
onstant mutation: 0.05–0.5–0.7
itness functions: SRM, MDL, MSE, AIC, FPE
ode weighting factor: 0.01
ddition function: exp
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Table 2
The predicted results for Eq. (2) by genetic programming

Added noise (%) Equations predicted

0 X3X2 − (X1
* − 25.405)/101.62

1

w
i

i
(

D.Q. Do et al. / International Journa

igher values of R2 indicating the improved quality of the model.

2 =
(

1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

)
× 100 (1)

here ȳ is the mean of the dependent variable; ŷ the predicted
alue from the model; n is the number of records.

. Results and discussion

.1. Validation of the method

The GP method was validated successfully, as reported else-
here (Do, 2006), using mathematical data with 1% and 10%

oise added. The results indicated that in the majority of cases
he equations generated by GP were similar to the correspond-
ng mathematical equations used to generate the mathematical
ata. This confirmed the validity of the GP approach to deal

d
t

y

Fig. 3. Comparison of previous and present mode

Fig. 4. 3D plots of (a) GP and (b) the st
1 X3X2 + (X1/4.26) + (X1/96.25)
0 X3X2 − (X1/−4.97)

ith real data, including the inevitable variation associated with
ndividual data points.

For example from Table 2, although the equation constants
n the GP derived equations were different from the original Eq.
2), the results were extremely close to the original Eq. (2). The
ifferent constants from the original equation were caused by

he noise added to the data.

= x1

4
+ x2x3 (2)

ls from GP and the statistical model for Y2.

atistical equations for Y1 and Y3.
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improved compared to those from the statistical models. For
this database, it is apparent that overall GP produced improved
models.
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.2. Matrix tablet formulation

By choosing suitable values of control parameters, GP gen-
rated satisfactory models for all responses of the matrix tablet
ormulation. The equations generated from GP were as follows:

1 = ((exp((X2/X1)X2))/((2.68X2) + X3))

× (2.20 − X1)(X3/12.29) (R2 = 0.97) (3)

2 = X3 + exp(−27.94X3(X2 + 0.24))

+ exp(−53.39X1X3(X3 + exp(−59.68X3X3X3)))

(R2 = 0.94) (4)

3 = ((X2 + X2)/ − 27.78) + ((((X1/26.34)/(exp X3))

× ((75.01X3) − (X2/(((X1/91.94)/

(X2/ − 52.97))X1))))/X1) (R2 = 0.97) (5)

Compared with a previous report (Do et al., 2005), the present
tudy gave improved models for all responses after further analy-
es. For the models of the cumulative percentage release after 1 h
Y1) and 12 h (Y3), the quality of the models was improved with
igher R2 values. In addition, for the Y2 response, the equation
as less complicated. The previous equation for Y2 (Eq. (6)) was

xtremely complicated, because of overtraining or overfitting
Dias et al., 2006; Hwang et al., 1998).

2 = ((((((((X3 − X1)/X2) + (((X2 + (X2/X3))

× (((X1/ − 80.24) − X1)(77.43X1)))/ − 27.16))/

((X2 + (X2 − ((X3/27.38)/(20.77/40.35))))

− ((X3 + X3)X2)))/(((X2/X2) + ((((X3 − X1)

× ((X1/X1)79.38)) + X2)(X1/42.05)))

+ ((((X2 + X2) + X1)/((X3 − X1) + (X1(X3 − X2))))

+ (X2 + 13.73))))/ − 52.54) − ((X2/X1)/

((−32.35)X3))) + X3), (R2 = 0.99) (6)

Comparison of models for Y2 in Fig. 3 indicates that whilst
he present model had a lower R2 value when compared to the
revious result (Do et al., 2005), it was improved with good
epresentation of the relationships between the Y2 property and
ngredients (X2, X3).

The statistical equations for the outputs Y1, Y2, Y3 taken from
he literature (Bodea and Leucuta, 1997) are shown below:

1 = −0.015 + 0.145X1 − 0.062X2 + 0.168X3 + 0.594X2
2

− 0.691X1X2 (R2 = 0.96) (7)

2 = 0.279 − 0.1X1 − 0.08X2 + 0.626X3 + 1.27X2
2

− 0.841X1X2 (R2 = 0.88) (8)

3 = 0.629 − 0.246X1 − 0.08X2 + 0.653X3 + 1.122X2
2

− 0.841X1X2 (R2 = 0.91) (9)
F
d

harmaceutics 351 (2008) 194–200

In comparison with the statistical result reported in the litera-
ure (Bodea and Leucuta, 1997), whilst producing more complex
quations for many responses, GP generated equations with
igher R2 values. In addition, the 3D graphs from Figs. 3 and 4
emonstrate that comparable representations of the relationships
etween the ingredients and properties of the formulation can be
een from both the GP and statistical models. For example, the
ncreasing levels of both hydrophilic polymers: hydroxypropyl-

ethylcellulose (HPMC) and sodium carboxymethylcellulose
CMCNa) reduced amount of drug released after 1, 6 and
2 h.

Fig. 5 demonstrates the improved predictive power of the
P models for the unseen data. The linear R2 values for all

hese responses were higher or very similar to those from
he statistical models. For the outputs Y2 and Y3, the slope
nd the intercept coefficients from the GP models were much
ig. 5. Scatter plots, linear equations parameters and R2 values for four unseen
ata points from GP (�) and statistical ( ) methods for Y1, Y2 and Y3.
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Y60 = 40.15 + X1 − X2 − X3 + exp(X1 − X2) − exp X3

(R2 = 0.73) (11)
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.3. Controlled release diclofenac sodium microspheres
ormulation
The equations predicted by GP are as follows:

80 = 426.22 − 51.15X1 + 59.03X2 + 27.60X3 (R2 = 0.93)

(10)

Y

Fig. 6. 3D graphs of (a) GP and (b) the stat

Fig. 7. Scatter plots, linear equations parameters and R2 value
harmaceutics 351 (2008) 194–200 199
360 = 73.95 + 4.00X1 − 5.19X2 − 2.00X3 (R2 = 0.92)

(12)

istical equations for the response t80.

s for four unseen data points from GP for all responses.
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480 = 83.02 + 3.82X1 − 3.82X2 − 2.82X3 − 2.00X1X2

− X2X3 (R2 = 0.90) (13)

It can be seen from Eq. (10), stirring speed X1 has a positive
ffect on the drug release rate whilst increased amount of CaCl2
X2) and percentage of heavy liquid paraffin in the dispersion
edium (X3) decrease the release rate. The time for 80% drug

issolution (t80) is influenced simultaneously by all observed
ariables and increases with higher values of X2 and X3 as well
s a low level of X1.

The study of Gohel and Amin (1998) provided the following
quation for t80 from statistical analysis:

80 = 426.296 − 51.22X1 + 58.28X2 + 27.22X3

+ 13.08X1X2 + 11.92X2X3 (R2 = 0.96) (14)

Eq. (10) generated by GP for t80 is considerably simpler than
q. (14) with a similar R2 value. When comparing these two
quations, there are no major differences between the coeffi-
ients and the equation from GP can be considered as a simplified
orm of the statistical equation. Also as seen in Fig. 6, both mod-
ls show that X1 has a negative effect on the response t80 whilst
n increased percentage of heavy liquid paraffin results in an
ncrease of the time for 80% drug release.

For other responses, Gohel and Amin (1998) did not pro-
ided the statistical results using the same database as used for
valuating t80. Thus in the present study, the predictive power of
hese responses was examined based on the regression analysis
or unseen data.

From Fig. 7, it is clear that the satisfactory predictive power of
he GP models for the unseen data can be seen. The linear R2 val-
es for all these responses were significantly high and the slope
nd the intercept coefficients from the GP models were accept-
ble. In general in comparison with the statistical method, GP
roduced satisfactory models for all responses. Moreover for the

80 response, the predictive equation of GP for this formulation
s simpler compared to the equation generated from statistical
nalysis.

.4. General comments

When validating the capability of GP using mathematical
ata (Do, 2006) and comparing the predictive power of GP and
he statistical methods for both controlled release products, it

as recognised that the basis of the statistical approach is to
se standard equations and procedures based on statistical the-
ry to obtain the final equation. This equation is unique for the
nput data and selected statistical procedures. The statistical out-

W

Z
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ut is fixed and if a formulator wants to improve the quality of
he final statistical equation, he must carry out further experi-

ents to obtain a higher quality data set. However with GP, a
ormulator can obtain alternative outputs, with a selection of an
ppropriate training model. For example, by changing values
f control parameters or adding the “exp” function, the quality
f the predictive equation can be improved. In other words, a
ormulator can perform GP in an iterative manner by directed
hange of control parameter values until the most appropriate
nd/or predictive model is obtained. However care must be taken
o avoid overtraining as observed in the matrix tablet example.

. Conclusion

Genetic programming, with its advantage of generating math-
matical equations, has been shown to be an efficient method
or modelling controlled release formulations. In contrast to
tatistical approaches, GP requires no assumption of the func-
ional form (e.g. linear or quadratic) to be used to describe the
ause-and-effect relationships.
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